Fixed points and unfounded chains
نویسندگان
چکیده
منابع مشابه
Diagonal arguments and fixed points
A universal schema for diagonalization was popularized by N.S. Yanofsky (2003), based on a pioneering work of F.W. Lawvere (1969), in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function. It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema. Here, we fi...
متن کاملInfinite-randomness fixed points for chains of non-Abelian quasiparticles.
One-dimensional chains of non-Abelian quasiparticles described by SU(2)k Chern-Simons-Witten theory can enter random singlet phases analogous to that of a random chain of ordinary spin-1/2 particles (corresponding to k-->infinity). For k=2 this phase provides a random singlet description of the infinite-randomness fixed point of the critical transverse field Ising model. The entanglement entrop...
متن کاملDigital Fixed Points, Approximate Fixed Points, and Universal Functions
A. Rosenfeld [23] introduced the notion of a digitally continuous function between digital images, and showed that although digital images need not have fixed point properties analogous to those of the Euclidean spaces modeled by the images, there often are approximate fixed point properties of such images. In the current paper, we obtain additional results concerning fixed points and approxima...
متن کاملBlowup and Fixed Points
Blowing up a point p in a manifold M builds a new manifold M̂ in which p is replaced by the projectivization of the tangent space TpM . This well–known operation also applies to fixed points of diffeomorphisms, yielding continuous homomorphisms between automorphism groups of M and M̂ . The construction for maps involves a loss of regularity and is not unique at the lowest order of differentiabili...
متن کاملGeneralized weakly contractive multivalued mappings and common fixed points
In this paper we introduce the concept of generalized weakly contractiveness for a pair of multivalued mappings in a metric space. We then prove the existence of a common fixed point for such mappings in a complete metric space. Our result generalizes the corresponding results for single valued mappings proved by Zhang and Song [14], as well as those proved by D. Doric [4].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annals of Pure and Applied Logic
سال: 2001
ISSN: 0168-0072
DOI: 10.1016/s0168-0072(00)00061-0